Transcription-Coupled Repair of 8-oxoguanine: Requirement for XPG, TFIIH, and CSB and Implications for Cockayne Syndrome
نویسندگان
چکیده
Analysis of transcription-coupled repair (TCR) of oxidative lesions here reveals strand-specific removal of 8-oxo-guanine (8-oxoG) and thymine glycol both in normal human cells and xeroderma pigmentosum (XP) cells defective in nucleotide excision repair. In contrast, Cockayne syndrome (CS) cells including CS-B, XP-B/CS, XP-D/CS, and XP-G/CS not only lack TCR but cannot remove 8-oxoG in a transcribed sequence, despite its proficient repair when not transcribed. The XP-G/CS defect uniquely slows lesion removal in nontranscribed sequences. Defective TCR leads to a mutation frequency at 8-oxoG of 30%-40% compared to the normal 1%-4%. Surprisingly, unrepaired 8-oxoG blocks transcription by RNA polymerase II. These data imply that TCR is required for polymerase release to allow repair and that CS results from defects in TCR of oxidative lesions.
منابع مشابه
Interactions involving the human RNA polymerase II transcription/nucleotide excision repair complex TFIIH, the nucleotide excision repair protein XPG, and Cockayne syndrome group B (CSB) protein.
The human basal transcription factor TFIIH plays a central role in two distinct processes. TFIIH is an obligatory component of the RNA polymerase II (RNAP II) transcription initiation complex. Additionally, it is believed to be the core structure around which some if not all the components of the nucleotide excision repair (NER) machinery assemble to constitute a nucleotide excision repairosome...
متن کاملDefective Transcription-Coupled Repair in Cockayne Syndrome B Mice Is Associated with Skin Cancer Predisposition
A mouse model for the nucleotide excision repair disorder Cockayne syndrome (CS) was generated by mimicking a truncation in the CSB(ERCC6) gene of a CS-B patient. CSB-deficient mice exhibit all of the CS repair characteristics: ultraviolet (UV) sensitivity, inactivation of transcription-coupled repair, unaffected global genome repair, and inability to resume RNA synthesis after UV exposure. Oth...
متن کاملRETRACTED: Transcription-Coupled Repair of 8-oxoGuanine Requirement for XPG, TFIIH, and CSB and Implications for Cockayne Syndrome
(Evans et al., 1993; Hatahet et al., 1994). Its removal in human cells is initiated by a glycosylase/AP lyase activity closely related to E. coli endonuclease III, or Nth (Aspinwall et al., 1997). In contrast, 8-oxoG is a premutagenic lesion that mispairs with A, generating GC to TA Florence Le Page,*†‖ Ely E. Kwoh,† Anna Avrutskaya,‡ Alain Gentil,* Steven A. Leadon,‡ Alain Sarasin,*§ and Prisc...
متن کاملDifferential requirement for the ATPase domain of the Cockayne syndrome group B gene in the processing of UV-induced DNA damage and 8-oxoguanine lesions in human cells.
Cockayne syndrome (CS) is a rare inherited human genetic disorder characterized by UV sensitivity, developmental abnormalities and premature aging. The cellular and molecular phenotypes of CS include increased sensitivity to oxidative and UV-induced DNA lesions. The CSB protein is thought to play a pivotal role in transcription-coupled repair and CS-B cells are defective in the repair of the tr...
متن کاملTranscription through 8-oxoguanine in DNA repair-proficient and Csb(-)/Ogg1(-) DNA repair-deficient mouse embryonic fibroblasts is dependent upon promoter strength and sequence context.
Cells from Cockayne syndrome patients are characterized by a deficiency in transcription-coupled repair (TCR) of UV-induced lesions. These cells have also been shown to be sensitive to oxidative stress and defective in TCR of some oxidative lesions. Because some discrepancies about this pathway have been recently reported in the literature, we describe here a system that allows us to analyze th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 123 شماره
صفحات -
تاریخ انتشار 2000